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ABSTRACT

This paper discusses infinite server queues whose Input

is a Phase Type Renewal Process in troduced by M. F. Neuts

(Renewal Processes of Phase Type , Nay . Res. Log. Quart ,

forthcoming). The problems of obtaining the transient and

steady-state dis tributions and moments of the queue length

are reduced to the solution of certain well -behaved systems

of linear differential equations. Sample computations are

provided with as many as ten phases. The paper contains

some useful explicit formulas and also discusses the

interesting special case where the service time is also of

phase type. The Phase Type Distributions include a wide

variety of models such as generalized Erlang, hyper—

exponen tial (mixtures of a finite number of exponent ials)

as very special cases and possess great versatality in

modeling a number of interestin g qualitati ve feati res such

as bimodality .
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CHAPTER I

THE PH /G/~ QU EUE

1.1 PH-Dis tributIons and PH-Renewal Processes

The versa tile class of probabil ity distributions of

Phase Type (PH-distributions ) which includes many well-

known models such as generalized Erlang, hyper-exponential

etc., as special cases was introduced by M. F. Neuts [5],

who , in a number ~if follow -up papers (c.f. Bibliography in

[7] ) , also d iscussed  th ei r useful  compu ta ti onal propert ies

in t h e ana ly s i s of queu e in g sys tems. In th is  paper we shal l

exclusivel y deal with PH-distr ibutions of continuous type

which are obtained as the distribution of the time till

absor ption in an (m+1)-state continuous parameter Markov

cha i n wi t h i nfini tes imal genera tor

ri
Q 1

L~
an d initial probability vector (cs , c&

m+i ), °~~rn+l <1 , where

I=(Ijj) is a non -s ingular m~m ma tr i x such that T 11 <O and

for i~ j, and 10 >0 is an rn-vector satisfying Te+T°=O ,

where e ’=( l ,...,l). To avo id uninteresting complications ,

we shal l henceforth assume that a
~+i

O. It is now an easy

matter to see that such a PH -distribution has c.d.f., 

. - - --A~~~~ -~~~~~- - -- -~~~~~- -~~~- -



F(x )~ l-aexp(Tx)e , x~O. (1.1.1)

Such a distribu tion Is said to. be of PH-type with a represenr-

tation (a,T ) .
—

For technical reasons we. may assume , w i thou .t loss o .f

general ity [5],. that the conservative stable matrix Q*=T+TOAO ,

where A0 d1ag(ul,...,c*m) and 
i0= .~T0 , . . . ., I0 ) ,.  is trreducib le.

Example 1.1: The generalized Erlang distribution which is

the convolu tion , of m Independent exponential distribution s

with parameters , say., 
~l ’’•’ ’~m respect ively has a

representation

a~ (l ,O ,. ..
T
_’Il ~

.ll 0

O 
~~2 ~2 

0
1 =

o 0 0 —u

Exam ple 1.2: The hyper-exponential distribution (which is

defined as a fini te mixture of exponential distributions) is

of PH-type with a represen tation

and T=dl’ag (_u 1~~....~
_
~~ ),

where ~~~ are the parameters of the exponential

dis tributions forming the mixture and u l~~
...,am are the

ratios governing the mixture.

I 
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In [6] Neuts discussed renewal processes where the

underl ying distribution is of PH-type. The “PH-R enewal

Process ” is ob tained by considering the Markov Chain with

infinitesimal generator Q*=T+T°A° and initial probabili ty

vec tor a , and a constructive definition of such a process is

that it is obtained by resetting the original Markov Chain Q

following each absorption (i.e. , renewa l) by performing a

multinornial trial with probabilities a.  For such a PH-

Renewal Process , the times between successive renewals are

i.i.d. , with c.d.f. F(.) given by (1.1.1) which is of Phase

Type.

For la ter use we let a denote the invariant prob ability

vector of the Markov Chain Q* , i.e., the unique (strictly

positive) vector satisfying

OQ* 0, ee=l.

We recall from [6] that the stationary version of the PH-

Renewal Process i s ob tained by starting the Markov Chain Q*

wi th initial probab ility vector 0. Also it is an easy

matter to verify that

where A~~=-aT~~e is the mean of the PH-distribution F(.)

given by (1.1.1). In the sequel we shall let e denote the

mxm ma trix each of whose rows is 0.

‘ /
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1.2 he PHJG/~ Queue

In this paper we consider a GI/G/~ queue In wh ich the

arrivals form a renewal process of Phase Type. Such a model

w i ll be deno ted by PH/G/~ . We shall assume that the under-

lying PH-distribution F(•) has a representation (cs ,T)

sa tisfying the conditions set forth in Section 1.1. The

c.d .f. of the service time will be denoted by H(.), and i t

shall be assume d that the mean service time {l-~ (t)}dt<co .

For the PH/Gb ’ queue we show that the problems of

ob taining the transient (and steady-state) distributions and

momen ts of the queue length (Le., the number of cus tomers

In the system) can be reduced to the solution of certain

well- behaved systems of linear differential equations. 8y

appl ying a classical result on the asymptotic behavior of

linear systems of differentia l equations , we prove , under

the assump tion )L<~~, the ex istence of a steady-state distri-

bution and obtain an explicit formula for the steady-state

mean queu e length. By considering the special case where

i~(’) is discrete with a finite number of atoms , we show that

in the general case there Is no hope of solving these

differen tial equations explicitly in a computat lonally useful

form . Nevertheless , these systems of differential equations

can be solved numer ically with considerable ease. We discuss

some aspects of such computations and present some sampl e

computations of the first four moments of the queue length

for models w ith as many as ten phases.
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Our compu tational examples illustrate how sole reliance

on the mean queue length may result in serious errors in the

qualitative interpretation of the behavior of these

stochastic systems. They also enhance the importance of

algor ithmic solutions using numerical methods to stochastic

models w ithout which an in-depth analysis is seldom possible.

F inally, we dis cuss briefly the interesting subclass of

PH /PH/co queues - i.e., PH /G/oo queues where the service time

distribution is also of phase type - and in the course of the

discussion obtain an alternate proof of a theorem due to

Neu ts and Jam [8] governing the independence of the number

of cus tomers in the different phases of service in an M/PH/co

queue.

~
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CHAPTER II

THE BASIC SY STEM OF DIFFERENTIAL EQUATIONS
• AND ITS ASYMPTOTIC BEHAVIOR

2.1 Introduction

For the PH/Gb ’ queue defined in Chapter I we let X(t)

deno te the queue length (i.e., the number of customers in the

system) and J(t) the phase of the arrival process at time t+ .

For k~ O , i ,j=1 ,...,m we le t

G~
3(t)=P [X(t)=k,J(t)=j IX (O)=O ,J(O)=i], t>O (2.1.1)

and le t G k(t) denote the mxm matrix whose (i ,J)-th entry is

G~
3 (t). We also define the generating function

G(z ,t ) = E z kGk(t), zI~~1 , t?O. (2.1.2)

In sec tion 2.2 we der ive the system of linear differential

equations governing G(z ,.) and call it the basic system of

d ifferential equations for the PH/G/co queue. By considering

the case where the service time c.d .f. H(.) is concentrated

on a finite number of points , we show , in Section 2.3 , that

the explicit solution to the basic system of differential

equa tions is of no use whatsoe ver for computational purposes

• thereby suggesting that in the general case there is no hope

of ob taining a use ful explicit formula for G(z ,t) or its

lim it as t-3’co .

-

~
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Finally In Section 2.4 we apply a classical result on

the asymptotic beha vior of linear systems of differential

equa tions to the basic system of the PH/G/oo queue and

establish (under our assumption that the mean service time

pcoo ) that the process (x ( t ) , J ( t ) )  is ergodic and has a stead y

state distribution independent of the Initial conditions.

Once again , we do no t have an explicit formula for the limit.

2.2 The Basic System of Differential Equations

Let

Sn (t)=((ul,...,un ): u 1~ O , E u 1~ t}, t~ O , n~ l .

Also for (u1~~...~ u~ )ES~ (t). O~k~n , let g (k)(t;u 1, u~ )

denote the probability of obtaining exactly k successes in a

sequence of n indepen dent Bernoullian trials with respective

proba bilities of success 1-~i(t-u 1 ), l—A( t—u 1 —u 2),

l—~ (t-u 1 - .. .-u~ ). Note that l-H(t-u 1 - ...—u 1 ) Is the

pro bability that a customer who arrives at epoch u 1 +. .

is still in the system at t.

In terms of the above notations we now have

Lemma 2.2.1:

For t?O ,

G0(t)=exp (Tt)+

E I exp(1u 1
).T0AO .... .exp (Tu )•T°A° .

n=l S~ (t)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ 
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and for k?l

Gk(t)= E I exp(Tu 1 )•T°A °•. . .exp(Tu ).T°A°
n=k S~ (t)

exp{T(t-u 1 - . . .
~

u n )}g~~~
(t;u l ,... o U n )dU 1 . . ~du~

Proof: The formu lae above are got by conditio ning on n , the

num ber of arrivals in (O,t],an d the arrival epochs u 1,

u 1 +u 2,. . . , u 1 +. . .+u~~, and applying the law of total

probability .

We are now ready to state our basic result as

Theor em 2.2.2: For all teC(H), the set of continuity points

of ~i( • ) ,  and I z l s l , we have

}-~
. G (z ,t ) = [ ( T + T ° A ° ) + ( z — l  ) { l _ i~(t)}T0A0]G(z ,t) (2.2.3)

wi th  the in i t ia l  cond i t ion

G(z ,O)=I (2.2.4)

Proof: (Throughout this proof we shall use prime to denote

deriva tives with respect to t).

Noting that

‘~ k ( k ~ 
— —

E z g ’ ‘(t;u 1,..,u n ) Ii
k=O ‘~ 1=1

we hav e from Lemma 2 .2.1 that

G(z,t)= zkGk (t)= Z C~ (z,t), (2.2.5)
k 0  n=O

where

C0(z,t)=exp(Tt )

— .-- ~~~..~~~~~~~~~ -- - -‘  . —__
~-— -~~~~- -  .~~~~~~~~-~~~~~ --
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and for n~ l

C n (Z
~~

t )=

( f l  
- - 

-
~

f  ~ t~ ex p(Tu.).T°A°.[H(t—u 1 - ..-u 1
)1-z{l-H(t-u 1 - . .-u 1)}])..S~ (t) Li=1 

1 )

exp[T(t-u 1 - . .-.u~ )]du 1.. .du~

Now for n>2 ,

C (z~ t)=f [exP(Tu1
).T0A0 .[H(t_u

1 )
+z {1_i~(t_u 1 )}].n

( f l
f  11 exp(Tu.).T°A° .fH( t-u 1 - . .—u 1 )+1

z{l-~(t-u 1 - . .-u 1 )}]).exP[T(t~u l~~. -

du 2. - .dun] 
du 1

=Iexp(1u 1 ) .T °A ° [ H ( t -u 1 )+zfl—H(t — u 1 )}]C~ _ 1 (z,t-u 1 )du 1O
t

= fexp[T(t-t)J.T°A° [H(t)+z{l—H(t)}]C~ _ 1 (z~.t)dc
0

or
t

exp(_T t).C~ (z,t)= fexp(_TT).T0A0 [z+(l_z)ii (t))C — l (z ,r) dt.
0

Th i s, on differentiatin g with respect to t , yields

_TC~ (z,t)+C~ (z,t)=T0A0 [z+ (1_ .z)i~(t)]C~~ 1 (z,t.) (2.2,6)

f~r all n~ 2 and t~C(ii). It is easily verified tha.t (2.2.6)

ho lds for n=l also. Now adding (2.2.6) for n�l and using

( 2 . 2 . 5 )  we get

_T [G(z ,t)_C 0(z,t)]+[GI(z,t)_c~ (z ,t)]=rAo [z+(1_z)~ (t)]G(:z,t)

~~~~—-. ~~~~~~~~ - .~~-& - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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and since

C~ (z,t)=-TC 0(z ,t)

we have

G’ (z,t)~ {(T+T0A 0)+(z_ l){l_ I~(t)}T0A0]G (z,t)

for all tcC(H). Thus we have (2.2.3). EquatIon (2.2.4) is

obvious.

Remark: The system of differential equations (2.2.3) with

the initial condition (2.2.4) shall be called the Basic

System of Differential Equations for the PH/G/co queue.

Note that the basic system of differential equations for

the PH/Gb ’ queue is of the form

Y ’(t)~ [A+R(t)JY(t), (2.2.7)

where A is a constant matrix and R(t)÷O as t+co. Regarding

the system (2.2.7) we have the following

Pro position 2.2.8:

a) If R(.) is Riem ann-integrab le in fO ,t0], then there

ex ists a unique solution of (2.2.7) in [0 ,t0] for an y given

ini ti a l cond it ion.

b) If f~ IR (t) ~dt<oo and if all the solu tions of
0

Y ’(t)=AY(t) are bounded , then all the solutions of (2.2.7)

are bounded in [O ,co).

Proof: For Part (a) we refer the reader to Bellman [1],

page 1 65. Part (b) due to Dini -Hukuhar a may be found in

Cesari [2], p. 37 , 3.3 (iii).



We can appl y the above Proposition to the system

(2.2.3), (2.2.4) to obtain

Theorem 2.2.9: The ba sic system of differential equations

for the PH/G/oo queue given by (2.2.3) and (2.2.4) has a

unique solu tion in [O,o’). Fur ther this solution is bounded

i n [O ,o~).

Proof: Tha t the second condition of Part (b) 0-f Proposition

2.2.8 is satisfied by the system (2.2.3) follows from the

fac t that exp[(T+T°A°)t] is stochastic for any t?0. The

res t of the conditions in Proposition 2.2.8 follow easily

from our assum pt ion tha t

~~f{l-~(t)}dt<’°.0
The Theorem now follows directly by specializing Proposition

2.2.8 to the system (2.2.3), (2.2.4).

Remar k: In the special case of the M/G/oo queue , the basic

system of differential equations reduces to a single

equa tion

h G(z ,t)= (z-l){l—j~(t)}~G(z ,t)

G(z,O)=l ,

for , in this case T=-~ , 
T0 =~ and a1 =l. Under the assumption

u 1 {1_H(t)}dt <co , we have
0

(t
G(z,t)~ exp~ — Xf{l—H( t) }dr (1— z))

L O  )

showing that X(t) has a Poisson distribution with parameter

IIiIl ~~ i;l.l _IlL ~._.Il.ll _lI,, ~__llllLI__._____.__._.fI_____ .-.—--—-—-_,.. . — ..,. —.--— —. —-——-———. 
. 
.- .... -—_.-—- —, —---.,—---. .—- .-...
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Xf (1-H (t) }dt . The stationary dis tribu t ion of the queue
0

len gth in this case is Poisson with parameter X~~. An

al terna te proof of th ese results can be found in Tak~cs [10].

2.3 A Discrete Example

We now consider the special case where H (-) is concen-

trated on a finite number of points 0<t 0~t1~~. . ~~~~~~ To be

specif i c we assume

if
if t1 1~ t<t 1 ; 1=1 ,...

1~o if t
k~~

t<co

where l=~~>~3.~> . • >
~ k>°~ 

In this case it is eas i l y verified

that the solution to the basic system of differential

equa tions (2.2.3), (2.2.4) is given by

1exP[{(T÷T0~
0
~~

(z_l) b0A0)t] if t~ t0

I exp[{(T+T0Ao)+(z~ l)B .ToA 0 }(t~ t. 1 )].G(z ,t. l~1 1 —  1 —

if t~ _~~ t~ t1, i=l ,...,k

Lb.. exp [(T+T0A0)(t~tk)] 
.G(z,tk) if t~ t~

wh ich is in the form of a product of matrix exponentials.

Also no ti n g that

exp {(T+T°A°)t}+e as t+oo ,

Lim G (z,t)=oG(z ,tk)

0
IT exp [{(T+ToA0)+ (z 1)~3.ToA 0}(t . .t.

1 )]j=k ~

where t_ 1 = 0 and the matrix product is taken in the order

j=k , j=k-l ,... ,j=O.

LL~
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The non-commu tativit y of the matrices in the products

above preven ts any simplification and makes the above

“ex plicit” formulae worthless for computing purposes. The

above example also shows that in the general case one has no

hope of ob taining any useful explicit formulae.

2.4 Asymptotic Nature of the Basic System of Differential
Equations

Under the assumption ~ =f{l-ii (t)}dt
<co we show in this

0
sec tion that as t+co the unique solution G(z ,t) to the bas ic

system of di fferen tial equa ti ons for th e PH/G/co queue tends

to a limit G(z), a ma trix whose rows are all Identical. This

is ob tained by applying the following classical result due to

Levi nson.

Pro position 2.4.1: Consider the system of m linear

differen tial equa tions

dL(t)

dt 
— = [~~~(t)]~ (t). (2.4.2)

Assume tha t the Jordan Canon ical form of the constant matrix

A is of the form diag(B 0,...,B5), where the square matrices

B. are such tha t

B0 diag (u 1~~...~ it~ ); Re ~~~~ j 1 ,...,L ,

— p._ — . ~~~~_ _  — —~~~, - . —— —.~~~~~~~~~~ -- ~~—-—- . .~~~~~.— .— .
~~~~~~

—. —
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ru &+i 
1 1
~~~~ 

l~

• B
3
= . 1 ; j=1 ,...,s.

L
Assume

Re UL+j<~~
<O for j=l ,...,s

and that

ffr 1.(t )Idt <co for i ,j=l,...,m.
0 ~

Then there ex i st m linearly i n d epend ent vectors

k=l ,...,m , each a solut ion of (2.4.2) such that as t-*co ,

(k) u kt ( ~

~ (t)-e C ’ ‘; k=l ,...,t

e~
t 
~
(k)(t)~ O; k=t +l ,...,m ,

w here Ac
~~~~

iJ kc~~~
; k l ,...,P..

Proo f: The lengthy proof of this Proposition may be found

in Levinson [3], Theorem 3.

Theorem 2.4.3: Under the assumption u f{1-H(t)}dt<°°, G(z ,t),
0

th e un iq ue solution to the bas i c system of d i fferen ti al

equations (2.2.3), (2.2.4), conver ges as t+co to a matrix

G (z) all w hose rows are identical. Further G (1-)=0.

Proof: Since T+T°A° is the infinitesimal generator of an

irreducible con tinuous time Markov — Ch ain , (T+T°A°)e=0.

Fur ther 0, as an eigenva lue of T+T°A° , has mul tiplicity 1.

Also an y other eigenva lue of T+T°A° has negative real part.

_ _  
_ _ _ _  .
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r In s hor t T+T °A ° satisfies the conditions for the matrix A In

• Proposi tion 2.4.1. It may easily be verified that all other

con ditions of Proposition 2.4.1 are satisfied by the system

of differential equations

aa(t )
• 

—

~~~~~ 

= T+ToA0 + z_ l~~~ 1 _ t ~~~T
oA o 1 t .  (2.4.4)

By Proposition 2.4.1 , the system (2.4.4) has m linearly

independent solution s - . ~~~~~ such tha t as t - co

a1 (t )
e i k(t)+O ; k=2 ,. . . ,m

where O>-~ >Re for every eigenvalue of T+T°A° for which

Re x
3
<O . Now every column of G(z ,t) satisfies (2.4.4) whence

the i-th column of G(z ,t) converges as t+co to c1 (z)e where

c1 (z) is a constant which depends on z only. Thus as t-’~~,

G(z ,t) converges to a matrix G(z) all whose rows are

iden tical.

Now we can wri te (2.2.3), (2.2.4) as

t
G (z ,t)=I+f[(T+T°A°)+(z—1 ){1_ii (c)}T0A0]G(z ,t)dt , t?0

0

and therefore

G (z)=I+f [(T+T0A0)+ (z~ l){1~~~(T)}T0A0]G(z ,t)dT.
0

N ow,

G(z)=OG(z)

=0+(z~ l )0T 0A 0 f ( l~~~( T ) } G ( z ,t )dt  ( 2 . 4 . 5 )
0

a, - .~~~~~~ . A. .~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , 
- 4
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Noting that G (1 ,r)=exp[(T+T0AO )r] is stochastic for every

r?O , we can apply the Monotone Convergence Theorem to show

tha t as z+l ,

f{1-~~(T)}G(z ,T)dTe + ue .
0 —

Thus from (2.4.5) It follows that as z+1 , G(z)-*e , i.e. ,

G(l-)=o , and th e proof is complete.

Remar ks:

1. Note that the (i ,j)-th entry of G(l-) is the stationar y

probability that the phase of the arrival process is j.

Clearl y this must be e~~, for, a is the invariant probability

vec tor of the Markov Chain Q* governin g the phases.

2. The resul t above also shows that the rows of G(z) define

a pro per joint probabil ity distribution.

The following Theorem is essentially a re-statement of

Theorem 2.4.3 in the terminology of probability theory .

Theorem 2.4.6: Under the assumption p= f {l_ I (t ) }dT< oo , the
0

proc ess {(X(t),J(t)): t>0} is ergodic and has a stationary

d istribution independent of the initial conditions.

Proof: A trivial probabilistic argument shows that even if

we assume that X(0)=k , J (0)=i for any k?O , l~ i~ m , then we

would still get the same limit c~ (z) ob tained in Theorem

2.4.3 for the sum

— ~~~~~~~~~~ - - - - -  -~~~~~~~- - ~~~. - —. - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .
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~ z~P[X (t )~ n ,J(t) jIX (O) k ,J (O) i]
n=0

whence the result.

•

1
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CHAPTER III

MOMENTS OF THE QUEUE LENGTH

3.1 Introduction

In this Chapter we shall be concerned with obtaining

the moments of the queue length X(t). Letting N(t) denote

the number of arrivals in (O,t], we can easi l y see tha t

0~x(t),~N(t) a.s. , and since all the moments of N(t) exist

[6], so do the moments of x ( t ) .  Let ~~
1
~~(t) deno te the

k-th factorial moment of x ( t )  under the assumption X(0)=0,

J(O)=i. Tha t is,

k~ l , l~~i~ m,

where x~~~(t) denotes the factorial product X(t)[X(t)-l].

[X(t)-k÷l]. We also let ~i~~
1
~~ ( t )  denote the rn-vector whose

i—th entry is u~~~ (t), k?1.

A pplying the rules of Calculus “rather formal l y ” to the

basic system of differential equations (2.2.3) and evaluating

k
—
~-j~ 

G ( z ,t)e , we easily obtain
z=l—

~~~~~~~~~t)= (T+T0A0
(l) (t)+{l~~~(t)}T0A0 e ~

) (3.1.1)
~~~~~~~~ )

and for k~ 2

~ 

- - 
. 

- -
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~~ ~
(k)(t) (T+TOAQ)~~

(k)(t)+k {l~~~(t) }ToAo~
(k-l ) (t) ~

> (3.l.2)

lL
(k)(0) 0 J

The above systems of differential equatio ns can easily be

solved numer icall y to obtain the first few moments of the

queue size. In Section 3.4 we shall present some sample

compu tations of the first four moments with as many as ten

phases.

The rigorous proof of (3.1.1) and (3.1.2) which involves

the application of a number of well-known theorem s in real

anal ysis is presented in the next section. SectIon 3.3

con tains a number of remarks on the numerical computation

of the probability distribution and the moments of the queue

leng th. Finally In Section 3.4 we present some sample

compu tations of the first four moments of the queue length

for models wi th as many as ten phases.

3.2 Moments of the Queue Length

We now sta te a few well -known results from real analysis

which we will need In the course of proving (3.1.1) and

(3.1 .2).

Lemma 3.2.1: Let 
~~~~~~ be a measure space , and let

(X i: z~ [a,b3I, where [a,b] is a finite closed inte rval of

1 dX
~R , be in tegrab le functions from c~ to R . If —n- exis ts on

• dX
[a,b] an d I—af I~ Y where Y is integrab le , then

-

~

---

~

L

~ 

-
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d dX
I X d c ~=f  —

~j-~
- d4~ for all zc[a ,b].z z

Proof: See p. 12 6, 30, Lo~ve [4].

PropositIon 3.2.2: Let (cz ,6,q,) be a measure space and let

{X
~
: z~ [a,b]} be in tegrable functions from c~ to Rm . If for

d kX d ’~Xall k?1 , exists on [a ,b] and H 
~ ‘~~ k where— 

dz dz
integr able , then

k d kX
~ ~ d4- , k� 1 .

dz ~2 ~ dz

Proof: This Propos ition follows readily by repeated

application of Lemma 3.2.1 and mathematical induction .

Pro position 3.2.3: If f is Lebes gue integrab le on [a,b] and
x

F (x)=ff (T)dT,
a

then

a) F(.) is a contin uous function of bounded variation

on {a,b].

b) F’(x)=f(x) a.e. on [a ,b].

Proof: For Par t (a) we refer the reader to Lemm a 6, p. 87,

Royden [9]. Part (b) is Theorem 9, p. 89, Roy den [9].

We are now read y to prove

Theor em 3.2.4: For all tc[O ,°°),

t I~~~~~~ t
1 (t)=(T+T0A0)I~~

l )(T)dT +Rl~~~(t)}dtT0 (3.2.5)

LL ~~~~~ - “ - - ‘a. ~~~~ .-__ .- - .- ‘ .~~~~~~~~~- ‘ --~~~~~~~~~~~~~~~~~: ~~~~~~~~~~~~.. 
__-- - -
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and fo r al l  k?2 ,
t ‘ t -.

(3.2.~ )0 0
‘I

Proo f: From (2.2.3) and (2.2.4) it follows easily that

t -
G (z ,t )= 1+1 [ (T+T°A° )+ (z-l){l—H CT ) }T°A°]G (z ,r

0
whence

rk t ~1~ k ) ( t ) . I~ f[ (T+T0A0)+(z_l) (l_I~(T)}T0A0]G (z ,r)dTe (3.2.7)

L~ Jz= l_

For zc[0,1], cc [O,t], clearl y,

O 
~ [~

-
~

-k G(z o T)e]1

~ 
[[.
~

-
~ 

G (z~T)e]
] 

=

~ E[N (~
k’1 (T)fJ(O)= i]

~

where N~~~(t)=N(t) [N (t)~ 1]...[N(t)—k+l]. The last inequality

in the above chain of ine qualities is got by using the fact

that N k (.),77a.s. Now , deno ti n g E(N~~~ tr)IJ( 0)=i] by

~~~~~~~~~~~~~~~~~~~~~~ we have

0 ~ I ~
t
~~~(t)dT<co for every l~ i~ m , k?l .

Also for 0~z~ l , 0~r$t , 

~~~ --~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
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k-i
+k{l.ii (T)}T0A0 

~~
k—l G(z ,t )eJ

~{J JT+T°A °J 1~ 1 1 T 0A 0 1 I } ~~
(k)(t) I I+k l 1T 0A 0 1 I~~

(k
~~
l)

(t)I I’
wh ere , v~~~~~~~( t )  is the vector whose i-th compone nt is

Now , in Propos ition 3.2.2 set c~=[O ,t], 8=Borel subsets of

[O ,t], ~=Leb esgue measure ,

~~
(t)=[ (T+T°A° +(z_ 1 ){l—ii (r)}T°A °]G (z ,T)e

Y
k
(T)= (I I T + 1 0 A 0 1 1+ I  J T ° A ° I 1 ) 1  I~~

(k)(t)I I+k I I T O A 0 I  I I I 
(k-l) (t)I I

to obtain , using (3.2.7), that

~
(k)

(t)~~ ~~~[(T+T0A0)+(z~ 1)fl~~~(T)}T0A0]G(z,T)e) dt ,
0 az z=l —

and the th eorem follows.

Corollary 3.2.8:

a) For all k~ l , ~(1( (.) Is con tinuous and of bounded

variation in any finite interval [O,t].

b) We also have

~-j~ 
~~~~( t ) = ( T + T 0 A 0 ) 1 1 M )(t)+{l~ i~(t)}T0A0 e , a.e.

an d for k�2

d p (k)(t) (T+ToAQ) (k)(t)+k{l~~(t) }ToAo (k
~

l 
~(t),

lL
(k 

~(o ) o

- ‘~~~~~~~~~~~~ - --.—~~~~~~.-— - -_ - .~~~~ - - - --~~~~~~~~~~~~~~~~ _ - -~~~- _- . -~~~~~~~- — - ____



.-- - ‘.-~~~~~~~~~~ —~~~~~~~~~~
-_ - -‘-,_- -_-—-‘ ____

Proof: This Corollar y is an Imm edi ate consequence of

Theorem 3.2.4 and Proposition 3.2.3.

The above d iscussion completes the proof of (3.1.1) and

(3.1.2) which were derived heuristically at the beginnin g of

this Chapter. In a very easy way we can now prove

Theorem 3.2.9: Under the assumption v f{l~ H(T)}dT<co , for
0 ,~~

any k?1 the vector of factorial moments ~~~~ ‘(t) converges

as t-~ to a (finite) vector all whose components are equal.

Further for any k?l , 11 (k)(.) is bounded in [0,oo).

Proo f: Clearl y it suffices to prove the existence and

finiteness of these limits. To this end note that (3.2.5)

i m p l ies
I t

~~~ )(t) !1
d I {1_ ~~(t)}d T~i1!L0<co as t+co.
0

This shows tha t ~.~
M )(t) converges to a finite limit as t+~

an d also (since ‘~l~~
•
~ 

i s con ti nuous in [O ,co)) tha t is

bounded i n [O,co). Now as induc ti on hypo thesis assume tha t

the Theorem is true for k-l. From (3.2.6) we now have

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~(T)dT ,

and the above integral converges as t+co to a finite limit

since ~(
k_ l) (.) is bounded on [0,co). Now the boundedne ss of

follows from i ts continuit y . By mathematical induction ,

the proof is complete.

___________________ ______ 
~~~~~ .- . •-



An interesting special case of the PH/G/oo queue is the

one in which the PH-Renewal process describing arrivals is

stationary - i.e. where the initial phase is chosen according

to the vector 0. For this case we have the interesting

Theorem 3.2.10: Suppose the initial phase J(O) is chosen

accor ding to the vector 0- , i.e. the PH-Renewa l process Is

stationary . Then
t -

a) the mean system size at t Is given by A f {l -H( T) }dT .
0

b) if p f{l_ I~(T)}dT<co , then the mean of the steady
0

state distribution of the system size is Xii where X ’ is the

mean in ter-arrival time .

Proof: Pre-mul tipl ying (3.2.5) by a,

I ’  t
O (t)=OT0 Ifl~~H(T)}dT ,

0
and the result in Part (a) follows by noting that

and T°=-Te. Par t (b) now easily follows from Part (a).

Usin g the above theorem and Theorem 3.2.9 we immediately

obtain

Corollar y 3.2.11: If p I{l_~RT)}dT<co , then0
(l) (t)~~X e  as t÷co .

3.3 Some Remarks on Com p u tat ional Me thods

Excep t in the special case of Poisson arrivals , there

does no t seem to be any hope of obtaining in closed form the

dis tribution of the system size or the moments thereof for

__ ______ J
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the PH/G/°~ queue. Never theless , all the systems of

differential equations above lend themselves readil y to

com putations usin g numerical methods.

For the purpose of computing the moments up to an index

k , it appears best to consider the km differential equations

given by (3.1.1) and (3.1.2) as forming a single system.

Usin g a general purpose inter -active software system c-ailed

DELSIM , due to Professor D. E. Lamb and available at the

Universit y of Delaware Computing Center , we compu ted the

time-dependent solutions to the moment-vectors up to the

fourth moment for models involving as many as ten phases by

applying the Fifth-order Kutta -Merson method. Some of these

com putations are presented in graphical form in the next

section. While the process times for these examples ranged

‘from one half to seven minutes , we point out that the DELSIM

system , due to its general nature , does no t take in to accoun t

the nice structure of the system of differential equations at

hand. A pro gram which takes into account the special

structure of the differential equations (3.1.1), (3.1.2)

could handle much larger examples and would also result in

considera ble savings in compute r time and storage.

Definin g

£k (t~~
G k (t~~

, k~0

we no te that the i-th entry of ak(t) is given by

It is easily seen from (2.2.3) and (2.2.4) that

UI_I 
- - .-‘ ~~~~~~~~~ ~~~~~~~~- —~~~~~~~~ - ~~~~~~~~ . - -



~-j~ ao tt)~ [T±~~t )T 0A 0 ] ao (t )  ~
) (3.3.1)

a0 (°)=~.

and for k~ l

~~~~~~ ak(t)=[T+H(t)T A ]ak(t)
1_H (t )}TA a k_ l (t)~~

~, (3.3.2)

The infinite system of differential equations above needs to

be truncated at a sufficiently large value of the index k

before any numerical method can be implemented to solve it.

It does not appear tractable to develop any optimal methods

for su ch truncation. In the absence of such criteria it

appears practical to truncate the system at k:Xij+3a where a

is the standard deviation of the stationary distribution.

Using such methods we are confident that the equations

(3.3.1), (3.3.2) can be solved for queues for which the

value of ~~ t is even moderately large. But as Xii becomes

very large , say over 200 , the systems of differential

eq ua ti ons abov e coul d become sti ff and pose cons i derable

di ff i cul ty i n solv i n g th em numericall y . Fur ther wor k a l on g

these lines is under way and will be the subject matter of a

for thcoming paper.

3.4 Computational Examples

To illus trate the computations of the moments of the

queue lengt h, we considered the follo w ing five PH—distribu-

tions for the inter -arrival times:

- --‘—-—..“—- -.— .-. -.-— - - — —— - —- . - —a— .
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Exponential (50), (3.4.1)

E( lO , 500),  (3 .4 .2 )
0.2E(5 , 62.5)+0.8E(5 , 1000), (3.4.3)

0.8E(2, 400)+0.2E(8, 1 00), (3.4.4)

0.5E(5 , l56.25)+O.5E(5 , 625), (3.4.5)

where E(n ,a) deno tes the Er lang distribution with density

f(x)= 1~~ ) e~~~ ~
n-l x?0.

While each of these PH-distributions has the same mean 0.02,

the distributions are qualitatively very different as the

graphs of their density functions (Figures 1-7) show. The

var iances of these distributions are respect ively 4x10 ’4 ,

0.4~ l0~~ , ll~ l0~~ , lO .7~ l0~~ and 2.528~10~~ .

a~~ _~~~~~~~~~~~~~~~ - ‘ “.— . - - ‘.. . — . — —‘  . . . .,
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For the servic e time we cons idered the fo11owln~ three

dis tributions each of which has mean 1:

Exponential (1), (3.4.6)

R(0,2) (3.4.7)

A discrete distribution which has mass 0.5 at
each of the points 0.5 and 1.5. (3.4.8)

Fi gures 8-11 give the graphs of the mean (Nul) and the

three central moments (NU2 , NU3 , NU4) re spectively of the

queu e leng th , plo tted agains t ti me (X ) , for the five PH/G/o~

queues each of which has the same service time distribution ,

viz., Exponen tial (1), and wh ich have as their respective

inter — arrival time distributions the five PH-distributions

given by (3.4.1) — (3.4.5). Figures 12-15 present the

gra phs of the moments now under the assumption that the

service time distribution is R(0 ,2). Finally, Figures 16—19

presen t the graphs obtained under the assumption that the

serv ice time has the two-point distribution given by (3.4.8).
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An exam ination of the graphs of the mean queue length

(Nul) given in Figures 8, 12 and 1 6 shows that (for fixed

• service time distribution) each of the five PH-distributions

cons idered here results in almost the same value for the

mean qu eue length at every point x. The insensitivity of

even the time -dependent mean queue length to substantial

random var iability in the arrival process may be deceptive.

An exam ination of the computed curves for the time -dependent

curves of the second , third and fourth central moments show

that the latter are all highly sensitive to variability In

the inter-arrival times. In fact , i ncreased var i ab i li ty i n

the latter manifests itself in the same qualitative order in

all  the h i g her mo me nts.

Al thou g h , for the i nit ial con diti ons chosen in our

exam p les , the approach to “steady-state ” i s very rap i d , the

h igher values of the central moments can only be explained

by a more erratic beha vior of the path functions. These

observations indicate that sole reliance on simple analytic

express ions for mean queue lengths (where these are

ava ilable) may lead to serious errors in the qualitative

in terpretation of the behavior of stochastic models.

_ _  -------&- - - - - - . 
-
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CHAPTER IV

THE PH/PH/u’ QUEUE

4.1 Introduc t ion

Cons ider the PH/G/co queue and assume that the service

time distribution ii (.) is also of phase type. Such a model

will be denoted by PH/PH/co. In th is Chapter we shall set up

th e d i f ferent ia l  eq ua t ions for this mode l indica ti ng their

proofs briefly. In the course of our discussion we shall

a l so p resen t an al terna te p roof of an Interest i ng th eorem on

the M/PH/co queue due to M. F. Neuts and J. L. Jam [8].

To be specific le t us assume that the service time

c.d.f. i~i ( . )  which is of Phase Type has a representation

(~~,S) and consis ts of n phases. Once again we assume that

and w ithout loss of generality that the representation

(~~,S) is so chos en that the PH-Renewal Process defined by it

is irreducible.

For the PH/PH/co queue we are interested in the random

variables Xj(t)=the number of customers in phase j of

service at time t+ , j=1 ,...,n and J(t)=the phase of the

arr ival process at time t+ . We le t , for k~?0, t?0, l~ i,j~ m ,

- t ~~~~~~~~ ~
k~~t)=P [J(t)=i~ X 1 (t)=k 1 ~~~~~~~~~~~~~~~

X 1 (O)= ••~
=X n (O)=O (4.1.1)
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and denote the mxlii matrix defined by these entries by

,k , t). For t?O and 1z 1 I~~~~~
l , 1= 1 ,... ,n we also define

* the generating function
k k k

G(z ,...,z ,t)= z z 2 ...z ~ G(k ,...,k ,t).
‘ . . ‘  n= (4.1.2)

In the sequel we shall simply write k and z respectively to

denote the vectors (k1 ,. - . ,k,~) and (z1 ~~. . - ~zn )~ and it will

be implicitl y understood that k
~
?O is an integer for

i= l ,...,n and z~ I~ l for all i=l ,... ,n. We a l so let

Sr(t)={(u l,. ..,u r): u i ?O . ~u~$t}~ t>O , r>l.

Fur ther for ucS r (t)~ 
g~ (t ,u~ k) will denote the probability

of obtaining E 1 k 1 times ,..., E n kn times in r multinomial

trials each of which can result in any one of the n+1

mutually exclusive and collectively exhaustive events

E 1, . . .  ~~E~~~
÷1 

with the trials having the probabilities given

by the vectors

(.~exp [S(t_u 1
_ ..._ u~ )]~ l_

~ exp tS(t_ u 1 — ..._ u~ )] . .~); i= l ,...,r

respectivel y. Note that ar(t,u ,k), w here ke~r , is the

conditional probability , given there are r arrivals In (O ,t]

and these occur at U 1, u 1 +u 2,.. . ,u l +...+u r , that of these

customers are in phase j of service at time t+ for j=l ,...,n

and the rest r-Ek. depart in (O ,t]. We also have
l~~

- 

I 
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def k k
= ~ z1

1 ...z ~ g~ (t~ u~ k)
k?O
ke~r

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
u 1~...

..uj)].e)

(4.1.3)

W ith these notations we are now ready to discuss the PH/PH/u’

queue.

4.2 The Analysis of the PH/PH/u’ Queue

Lemma 4.2J: For t~ O ,

C r
G(O,t)=exp(Tt)+ E f ~ II exp(Tu i

).T0A0
~~
.

r=l Sr(t)Li=l )

exp [T(t_ u 1
_..._u~ )]g~ (t~~ ,O)du

an d for k>O ,

G(k ,t ) z I It ex p (Tu j ).T0A0j.exp [T (t_u l
_..._u r )]

r= ke Sr(t) i=l

g~ (t,u~ k )du

Proof: This Lemma is obtained by condit ioning on r , the

number of arr ivals in (O,t], and the arrival epochs u 1,

u 1 +u 2,... ~
U l

l *~~
4U r~ 

and appl yin g the law of total

probability .

Theorem 4.2.2: (Basic System of Differential Equations ):

For t�~U , 
- :

.. G (z ,t)=[(T+ToAo)+{~ exp(St).(z_e)}T0A0]G(z ,t) (4.2.3)

and
G ( z ,O)=I (4.2.4) - 

~....v —
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Proof: The above Theorem is obtai ned by using Lemma 4.2.1 ,

(4.1.2) and (4.1.3). We omit the details which are analogous

to those in the proof of Theorem 2.2.2.

By applying Propos ition (2.2.8) to (4.2.3), (4.2.4) we

have

Theorem 4.2.5: The ba sic system of differential equations

for the P1-I/PH/cc queue given by (4.2.3), (4.2.4) has a unique

~olu -t i on in [O ,co). Further this solution is bounded in

[O ,co).

Using Levinson ’s Theorem quo ted as Proposition 2.4.1 ,

we have

Theorem 4.2.6: As t+u’, the solution G(z ,t) to (4.2.3),

(4.2.4) converges to a matrix G(z) all whose rows are

id en t i ca l .  A l so G ( e ’)=O where

This implies

Theorem 4.2.7: The process ((x1 (t)~... ,X n (t),J(t)): t�O)

is ergodic and has a stationar y distribution Independent of

the initial conditions. This stationary distribution is

given by G(z).

Befor e we proceed with the discussion of the moments ,

we pr esent the following interesting result on the M/PH Iu ’

queue due to M. F. Neuts and J. L. Jam [8].

~

- -

~ 
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Theorem 4.2.8: Consider the M/PH/°’ queue (which is obtained

by setting c=l and T=-x in the PH/PH/co model). Given

X i (O)=~ •~
=X n (O)=O~ ~~~~~~~~~~~~~ 

are i ndependen t for any

fixed t>O , and for j=1 ,...,n , X (t) has a Poisson distribu-

tion with parameter ~f~exp(Sr)e.d-r , where e4 is the n-vec tor
0

w hose j-th component is one and all other components are

zero. Also the process (X 1 (t),. . . ,X 1~( t ) )  is ergod ic, and in

the steady-state these r.v .s. are independent with

followIn g a Poisson distribution with parameter

Proof: For the M/PI-I/u’ queue we get from (4.2.3) and (4.2.4),

-
~
-i.

~
- G(z ,t)=xC~ exp (S t).(z-e)}G(z,t)

G (z,O)=l

It is easily verified that the solution to the above is

g iven by
n r t

G(z,t)= ii expl-xJBexp (Sr ).e .dr .(1-z.)I
j=1 L O  Jj

whenc e the theorem.

Remark: No te that -~ S e. ~exp(St)e.dr is the expected
3

time spent by a customer In phase j of service. In the

l igh t of th is fac t , the values ob tained for the parameters

of the Poisson distributions in the above theorem are very

i n tu i t i ve .

We now re turn to the general discussion of the PH/PH/co

queue an d define the factorial moments



k?l , 1~ i~ m ,
l~ j$n .

* 
Also the vector

j=l ,...,n , k?1.

- . By differentiating (4.2.3) with respect to z~ and se tt ing

z=e , we c an ob tain

Theorem 4.2.9: For t>0 , l~ j~ n ,

~~~j~~l) (t)=(T+ToAo)j4l)(t)+{8e
Stej

}To ~

) (4.2.10)

~~1) (~ ).~ J
and for k�2

~
-t 

k)(t) (T+ToAo)j k)(t)÷k{~ eStej
}ToAo . k

~~ t _ ..~

(k )  ) (4.2.11)

~~j  
(0)=Q. .)

Fur ther as t—’~~, for any k?l, l~ j~ n , ~~~c k )
(~~~~) conver ges to a

finite vector all whose components are equal.

We conclude our discussion by presenting the following

Coro llary 4.2.10: For ~~~~~ as t+u’, p~~~~~( t )  converges to a

vec tor each of whose components is equal to - S 1e~ , where

A 1 is the mean Inter-arriv al time given by

Remark: No ting that ~~~~~~ is the expected time spent by a

customer in phase j of service , we see that the above result

Is very In tu i t ive.

~~A - - — —
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Proo f: From (4.2.10),

+eT~ (-~ S 
~~~~~~~ 

as t+°’..

= X ~ 5~
1 e~~

for , O - XciT~
1 and T° =-Te.

The proof is complete by appealing to the last statement of

Theorem 4.2.9.

I
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